立体声母带压缩器 – SDC–Stereo Double Compressor for Win/Mac

安装教程:

Win:解压的到的dll文件,直接放入VST目录即可

Mac:将VST文件放入VST目录即可,内有mac路径

 

立体声双压缩机。在每个通道上:光学压缩器,然后是VCA(电压控制放大器)压缩器(分立)。第一个通过典型的电致发光面板音乐行为来控制平均信号电平。离散的一个控制峰,增加了快速或完全控制。

三种光学模型,基于对几个ELP(电致发光面板)和LDR(光敏电阻)对的测量。

三种变压器型号,从干净到非常脏。

中/边编码和解码矩阵。完全控制立体声图像,两侧分别处理中部和侧面分量。

2019年新版本:样本对齐的混音功能。

强大而多功能,可以在各种来源上进行混音,对母带制作极为有用和有效。

可作为Win / Mac / VST / AU / AAX / 32/64位使用。

 

几个光耦合器选项。从旧到现代。

光压缩器最有趣,最独立的部分当然是光耦合器。

一般来说,只要通过一个发光物体和一个光敏物体实现控制信号和受控增益之间的耦合,压缩机就是“光学的”。

可以通过很多不同的设备来完成。

灯泡,LED,面板…

光敏二极管,晶体管,电阻器…

最现代(可能不太有趣)的一对可能是LED +晶体管。

经典的,受人尊敬的是电致发光面板+电阻(ELP + LDR)。

这听起来很有趣,因为每个设备的时域响应都非常复杂,缓慢并且具有明显的频率依赖性。所有音乐作品,只要碰巧以正确的方式结合在一起即可。与vari-MU一样,comp的大多数最终行为都驻留在单个组件(管,光耦合器)中。 ELP + LDR是一个极端。

ELP + LDR用于此comp。在分析这些单元时,我们开始测试几个选项(也是因为设计了我们即将推出的新的超低价HW光电压缩机)。

ELP和LDR都有奇怪的反应。这对夫妻成功了。您控制面板的模式非常重要。您可以向其中输入音频,输入控制信号,PWM等。

另外,还有许多LDR,它们的特征各不相同。

因此,不同的组合会构成不同的压缩机。在这个大模型中,我们包括了三个模型,对三个不同的组合进行建模。

老化效果会在不感兴趣的地方过滤掉。这种光耦合器会因温度和老化而损坏。较低的灵敏度没有意义。频率依赖性,包括频率依赖性定时,是音乐的一部分。

请注意面板和电阻器都如何摆放姿势。

因此,可以使用三种组合。第一个具有明显的频率-时间依赖性,频率-敏感性依赖性(其静态部分通常由控制电路部分补偿)和缓慢的反应。

第二个就像今天使用相同种类的组件制造的单元。

第三个模型模拟了使用“更好”的性能设备完成的工作(最初的目的是,发光器应该是即时的,LDR应该是快速而平坦的)。

这些光电压缩器不包含控件,因此我认为变化是有用且有趣的。

第一个模型可能在声源上很有趣,第二个模型可以提供(从控制角度来看)更强的变化。

第三人可能在团体,混音上更有趣。

几种变压器选项。

当然,变压器的设计目的是为了尽可能减少字符和动态范围。今天是颜色。

主要的局限性(旧的视角)和特征(现代的视角)可能来自核心材料。磁芯充满了绕组之间的空间,影响了磁耦合的性能和强度。

这种耦合最有趣的部分是磁饱和。它既具有记忆性,又具有频率依赖性,是“音乐”的两个部分。

有些材料会逐渐缓慢地达到饱和,而另一些材料会突然而迅速地达到饱和。类似于电平饱和,电子管VS晶体管,但比较到此结束。

如今,变形金刚变得如此有趣,因为它们可以添加其他没有添加的颜色。

有源电路,变压器,扬声器(吉他放大器的思考)是三种不可比较的颜色,因为它们以不同的方式竞争着不同的事物。

音频变压器具有很强的频率依赖性饱和度,低频率的饱和度较高,因为它们的能量较高,并且由于其失真程度更大,但对整个信号却有统治力,但饱和度会以一种怪异的方式影响总体电平:例如,可以降低电平低于较低级别的输入。

变压器和电路的相互作用可以做到这一点,但我认为它可以给出想法。

这里包括三个变形金刚,从柔和到现代而又强大。

选择一种钢来代表大多数字符,选择镍钢来代表较少字符。管理增益阶段以增加或减少颜色。钢

 

Stereo double compressor. On each channel: an optical compressor followed by a VCA (Voltage Controlled Amplifier) compressor (Discrete). The first one controls the average signal level with the typical electro-luminescent panel musical behavior. The discrete one controls peaks, adding snap or full control.

Three optical models, based on measurements on several ELP (electroluminescent panels) and LDR (light dependent resistors) couples.

Three transformer models, from clean to quite dirty.

Mid/Side encoding and decoding matrix. Full control on stereo image with two sides processing Mid and Side components separately.

NEW version 2019: sample-aligned Mix feature.

Great and versatile for mixing on all kinds of sources, extremely useful and effective for mastering.

Available as Win/Mac/VST/AU/AAX/32/64 bit.

Several opto-couplers options. From older to modern.

The most interesting and individual part of an opto compressor is of course the opto-coupler.

Generally speaking a compressor is “optical” whenever the coupling between control signal and controlled gain is achieved through one light emitting thing and one light-sensitive thing.

It can be done through a lot of different couples of devices.

Bulbs, LEDs, panels…

Light dependent diodes, transistors, resistors…

The most modern (and probably less interesting) couple is probably LED + transistor.

The classic, revered one is electroluminescent panel + resistor (ELP + LDR).

It sounds interesting because each device has a time domain response which is quite complex, slow and with a pronounced frequency dependency. All musical things, when they happen to be combined the right way. Like with vari-MU, the most of the final behaviour of the comp resides in a single component (a tube, an optocoupler). ELP+LDR is an extreme.

ELP+LDR is used for this comp. While analysing the units, we started testing several options (also because designing our new upcoming ultra-cheap hw opto compressor).

Both ELP and LDR have weird reactions. The couple makes it. The mode you control the panel is extremely important. You can feed audio into it, feed a control signal, PWM, etc.

Also there are lots of LDRs available, all with different character.

So, different combinations make different compressors. We included three models in this big one, modeling three different combinations.

Ageing effects where filtered out where they are not interesting. Such optocouplers are damaged by temperature and ageing. Lower sensitivity is not interesting. Frequency dependency, including frequency-dependent timing, are the musical part.

Note how panel and resistor both have attitude.

So, three combinations are available. The first one has pronounced frequency-time dependency, frequency-sensitivity dependency (whose static part is usually partially compensated for by control circuits) and slow reaction.

The second one is like an unit made today using the same kind of components, new.

The third one models something done from “better” performance devices (in the original purpose, light emitters should be immediate, LDRs should be fast and flat).

These opto compressors don’t include controls so I thought variations are useful and interesting.

The first model probably is interesting on acoustic sources, with a bit stronger (on a control perspective) variation available with the second model.

Third one could be more interesting on groups, mixes.


Several transformer options.

Transformers used to be designed for the least possible character and dynamic range, of course. They are colours, today.

The main limit (old perspective) and character (modern perspective) come probably from the material the core is made of. The core fills the space between the windings, affecting the behaviour and the strength of the magnetic coupling.

The most interesting part of this coupling is magnetic saturation. It has both memory and frequency-dependency, both parts of what “musical” is.

Some materials go into saturation slowly and gradually, while others do it fast and abruptly. Similar to level saturation, tubes vs transistors, but the comparison ends here.

Transformers became so interesting today because they can add their kind of colour no other thing adds.

Active circuits, transformers, speakers (thinking of guitar amps) are three kinds of colours which are not comparable because they do competely different things in different ways.

An audio transformer has a strongly frequency-dependent saturation, with low freqs saturating more because of their higher energy and ruling over the full signal because they distort more but saturation affects the overall level, in a weird way: for example, level can be reduced below lower level input.

Transformer and circuits interaction do it but I think it gives the idea.

Three tranformers are included here, from mellow to modern and strong.

Select the steel one for most character, nickel for less character. Manage gain staging for more or less colour. Steel is probably more interesting on single sources, guitars, drums. Nickel on mixes. Always compare wet to dry because you could easily lose dynamics while overdoing it.

此资源下载价格为2元,请先
充值未到账,请邮件至bianquzy@qq.com,我们会尽快帮您处理!
下载价格:2
VIP优惠:免费
下载说明:充值未到账,请邮件至bianquzy@qq.com,我们会尽快帮您处理!
0
分享到:

评论0

请先

购买Waves,水果,GoldWave,编曲教程等下架资源,请邮件至bianquzy@qq.com
没有账号? 忘记密码?